72 research outputs found

    Bounds for The Geometric-Arithmetic Index of a Graph

    Get PDF

    Gromov hyperbolicity in directed graphs

    Full text link
    In this paper, we generalize the classical definition of Gromov hyperbolicity to the context of directed graphs and we extend one of the main results of the theory: the equivalence of the Gromov hyperbolicity and the geodesic stability. This theorem has potential applications to the development of solutions for secure data transfer on the internetSupported in part by two grants from Ministerio de Economía y Competititvidad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (MTM2016-78227-C2-1-P and MTM2017-90584-REDT), Spai

    Alliance free and alliance cover sets

    Full text link
    A \emph{defensive} (\emph{offensive}) kk-\emph{alliance} in Γ=(V,E)\Gamma=(V,E) is a set S⊆VS\subseteq V such that every vv in SS (in the boundary of SS) has at least kk more neighbors in SS than it has in V∖SV\setminus S. A set X⊆VX\subseteq V is \emph{defensive} (\emph{offensive}) kk-\emph{alliance free,} if for all defensive (offensive) kk-alliance SS, S∖X≠∅S\setminus X\neq\emptyset, i.e., XX does not contain any defensive (offensive) kk-alliance as a subset. A set Y⊆VY \subseteq V is a \emph{defensive} (\emph{offensive}) kk-\emph{alliance cover}, if for all defensive (offensive) kk-alliance SS, S∩Y≠∅S\cap Y\neq\emptyset, i.e., YY contains at least one vertex from each defensive (offensive) kk-alliance of Γ\Gamma. In this paper we show several mathematical properties of defensive (offensive) kk-alliance free sets and defensive (offensive) kk-alliance cover sets, including tight bounds on the cardinality of defensive (offensive) kk-alliance free (cover) sets

    On the hyperbolicity constant in graphs

    Get PDF
    AbstractIf X is a geodesic metric space and x1,x2,x3∈X, a geodesic triangle T={x1,x2,x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if, for every geodesic triangle T in X, every side of T is contained in a δ-neighborhood of the union of the other two sides. We denote by δ(X) the sharpest hyperbolicity constant of X, i.e. δ(X)≔inf{δ≥0:X is δ-hyperbolic}. In this paper, we obtain several tight bounds for the hyperbolicity constant of a graph and precise values of this constant for some important families of graphs. In particular, we investigate the relationship between the hyperbolicity constant of a graph and its number of edges, diameter and cycles. As a consequence of our results, we show that if G is any graph with m edges with lengths {lk}k=1m, then δ(G)≤∑k=1mlk/4, and δ(G)=∑k=1mlk/4 if and only if G is isomorphic to Cm. Moreover, we prove the inequality δ(G)≤12diamG for every graph, and we use this inequality in order to compute the precise value δ(G) for some common graphs

    Oscillation results for a nonlinear fractional differential equation

    Get PDF
    In this paper, the authors work with a general formulation of the fractional derivative of Caputo type. They study oscillatory solutions of differential equations involving these general fractional derivatives. In particular, they extend the Kamenev-type oscillation criterion given by Baleanu et al. in 2015. In addition, we prove results on the existence and uniqueness of solutions for many of the equations considered. Also, they complete their study with some examples
    • …
    corecore